Classification of varieties with canonical curve section via Gaussian maps on canonical curves

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Canonical Varieties with No Canonical Axiomatisation

We give a simple example of a variety V of modal algebras that is canonical but cannot be axiomatised by canonical equations or first-order sentences. We then show that the variety RRA of representable relation algebras, although canonical, has no canonical axiomatisation. Indeed, we show that every axiomatisation of these varieties involves infinitely many noncanonical sentences. Using probabi...

متن کامل

Canonical Divisors on T-varieties

Generalising toric geometry we study compact varieties admitting lower dimensional torus actions. In particular we describe divisors on them in terms of convex geometry and give a criterion for their ampleness. These results may be used to study Fano varieties with small torus actions. As a first result we classify log del Pezzo C∗-surfaces of Picard number 1 and Gorenstein index ≤ 3. In furthe...

متن کامل

Canonical Heights on Hyperelliptic Curves

We describe an algorithm to compute canonical heights of points on hyperelliptic curves over number fields, using Arakelov geometry. We include a worked example for illustration purposes.

متن کامل

Non-archimedean canonical measures on abelian varieties

For a closed d-dimensional subvariety X of an abelian variety A and a canonically metrized line bundle L on A, Chambert-Loir has introduced measures c1(L|X) ∧d on the Berkovich analytic space associated to A with respect to the discrete valuation of the ground field. In this paper, we give an explicit description of these canonical measures in terms of convex geometry. We use a generalization o...

متن کامل

Involutions of a Canonical Curve

Introduction: Let C be a nonhyperelliptic smooth curve of genus π. An involution of C is an automorphism φ : C−→C such that φ = id. It induces a double cover γ : C−→C/φ = X , where X is a smooth curve of genus g. We say that C has an involution of genus g. By Hurwitz formula, we know that π ≥ 2g − 1. It is well know that a general smooth curve of genus π ≥ 3 has not nontrivial automorphisms. In...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: American Journal of Mathematics

سال: 1998

ISSN: 1080-6377

DOI: 10.1353/ajm.1998.0001